Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Cancer Discov ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630892

RESUMEN

Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL), are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin-ligase (CRL) with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiological KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the BTB domain of KLHL6 disrupted its localization and heterodimerization, and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL.

2.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499487

RESUMEN

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Asunto(s)
ARN Helicasas DEAD-box , Factores de Empalme de ARN , ARN Nuclear Pequeño , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Humanos , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Empalme del ARN , Intrones/genética , Células HeLa , Unión Proteica , Cuerpos Enrollados/metabolismo , Células HEK293
3.
Pharmacol Res ; 203: 107129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461961

RESUMEN

Cancer-related anorexia-cachexia (CRAC) comprises one of the most common syndromes of advanced cancer patients. The prevalence of CRAC increases from 50% to 80% before death. CRAC is associated not only with impaired quality of life in patients and family members but also with shorter survival. The management of CRAC is a great challenge in clinical practice. There are no definite practice guidelines yet for the prevention and treatment of CRAC. A multimodal strategy is the most effective way to treat anorexia-cachexia. Numerous medications have been suggested and used in clinical trials, while others are still being studied on experimental animals. These medications include branched-chain amino acids, eicosapentaenoic acid, thalidomide, cytokine inhibitors, steroids, antiserotoninergic medications, and appetite stimulants. The benefits of supportive care interventions and the advancement of exciting new pharmacological medicines for anorexia-cachexia are becoming more widely recognized. Health care professionals need to be aware of the psychosocial and biological effects of anorexia-cachexia, even though knowledge of the underlying molecular causes of the disorder has advanced significantly.


Asunto(s)
Anorexia , Caquexia , Neoplasias , Humanos , Anorexia/terapia , Anorexia/tratamiento farmacológico , Anorexia/etiología , Anorexia/fisiopatología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Caquexia/terapia , Caquexia/etiología , Caquexia/fisiopatología , Caquexia/tratamiento farmacológico , Animales
4.
Jpn J Clin Oncol ; 54(5): 530-536, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323684

RESUMEN

OBJECTIVE: Cancer-related anorexia-cachexia comprises one of the most common syndromes of advanced cancer patients. The management of cancer-related anorexia-cachexia is a great challenge in clinical practice. There are no definite practice guidelines yet for the prevention and treatment of cancer-related anorexia-cachexia. This study is considered to find out whether there is any role of mirtazapine in the improvement of anorexia in cancer patients. METHODS: A total of 80 cancer-anorexia patients were enrolled. Patients in the trial arm received the standard chemotherapy medication plus one tablet of mirtazapine 15 mg daily at night orally for 8 weeks starting from the day of an initial assessment. The control arm received the standard chemotherapy medication plus one tablet of megestrol acetate 160 mg daily orally for 8 weeks starting from the day of an initial assessment. Each patient was assessed by validated versions of Functional Assessment of Anorexia/Cachexia Therapy Anorexia/Cachexia Sub Scale v 4 questionnaires. RESULTS: After 4 and 8 weeks each patient was evaluated again using the Functional Assessment of Anorexia/Cachexia Therapy Anorexia/Cachexia Sub Scale tool. The quality of life of each patient was assessed by European Organization for Research and Treatment QLQ-C30 v 3.0. After 4 to 8 weeks of treatment, the Functional Assessment of Anorexia/Cachexia Therapy Anorexia/Cachexia Sub Scale score in cancer anorexia patients in the mirtazapine improved anorexia significantly. However, the improvement after 4 to 8 weeks was not statistically significant when it was compared with the megestrol acetate (P > 0.05). CONCLUSIONS: Therefore, the findings of this study reveal that mirtazapine might be a potential alternative to megestrol acetate, as it has shown potential efficacy as like as megestrol acetate.


Asunto(s)
Anorexia , Caquexia , Acetato de Megestrol , Mirtazapina , Neoplasias , Calidad de Vida , Humanos , Mirtazapina/uso terapéutico , Mirtazapina/administración & dosificación , Anorexia/tratamiento farmacológico , Anorexia/etiología , Acetato de Megestrol/uso terapéutico , Acetato de Megestrol/administración & dosificación , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Femenino , Caquexia/tratamiento farmacológico , Caquexia/etiología , Método Doble Ciego , Anciano , Adulto , Mianserina/análogos & derivados , Mianserina/uso terapéutico , Mianserina/administración & dosificación , Estimulantes del Apetito/uso terapéutico , Estimulantes del Apetito/administración & dosificación
5.
EMBO Rep ; 25(3): 1589-1622, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38297188

RESUMEN

Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Genes Homeobox , Genoma
6.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568654

RESUMEN

CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.

7.
Blood ; 142(9): 827-845, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249233

RESUMEN

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Asunto(s)
Factores de Transcripción NFATC , Linfocitos T , Humanos , Ratones , Animales , Linfocitos T/metabolismo , Factores de Transcripción NFATC/metabolismo , Linfocitos T CD8-positivos , Glucólisis/genética , Mutación
8.
Genes (Basel) ; 14(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36833188

RESUMEN

Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs.


Asunto(s)
Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , ARN Interferente Pequeño/metabolismo , Comunicación Celular , Proteínas/metabolismo
9.
Front Immunol ; 13: 819929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466816

RESUMEN

Krüppel-like factor 2 (KLF2) is a transcription factor with significant roles in development, maturation, differentiation, and proliferation of several cell types. In immune cells, KLF2 regulates maturation and trafficking of lymphocytes and monocytes. KLF2 participates in regulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Although pulmonary arterial hypertension (PAH) related to KLF2 genetic variant has been suggested, genetic role of KLF2 associated with immune dysregulation has not been described. We identified a family whose members suffered from lymphopenia, autoimmunity, and malignancy. Whole exome sequencing revealed a KLF2 p.(Glu318Argfs*87) mutation disrupting the highly conserved zinc finger domain. We show a reduced amount of KLF2 protein, defective nuclear localization and altered protein-protein interactome. The phenotypically variable positive cases presented with B and T cell lymphopenia and abnormalities in B and T cell maturation including low naive T cell counts and low CD27+IgD-IgM- switched memory B cells. KLF2 target gene (CD62L) expression was affected. Although the percentage of (CD25+FOXP3+, CD25+CD127-) regulatory T cells (Treg) was high, the naive Treg cells (CD45RA+) were absent. Serum IgG1 levels were low and findings in one case were consistent with common variable immunodeficiency (CVID). Transcription of NF-κß pathway genes and p65/RelA phosphorylation were not significantly affected. Inflammasome activity, transcription of genes related with JAK/STAT pathway and interferon signature were also comparable to controls. Evidence of PAH was not found. In conclusion, KLF2 variant may be associated with familial immune dysregulation. Although the KLF2 deficient family members in our study suffered from lymphopenia, autoimmunity or malignancy, additional study cohorts are required to confirm our observations.


Asunto(s)
Linfopenia , Nacimiento Prematuro , Femenino , Humanos , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Dedos de Zinc , Factores de Transcripción de Tipo Kruppel/genética , Zinc
10.
EMBO Rep ; 23(6): e54041, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35384245

RESUMEN

Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Membrana Celular/metabolismo , Humanos , Fosforilación , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina/metabolismo
11.
ACS Omega ; 6(4): 2856-2864, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553903

RESUMEN

Plastic recycling to make sustainable materials is considered one of the biggest initiatives toward a greener environment and socioeconomic development. This research aims to investigate the properties of a blend of recycled bale wrap linear low-density polyethylene (rLLDPE) and polypropylene (PP) (rLLDPE/PP 50:50 wt % matrix), which was further reinforced with 25 wt % agave fiber prepared by injection-molding. Different ratios of a combined industrial compatibilizer (maleic anhydride-grafted PP/PE) were used (1-3 wt %), which were compared with a synthesized compatibilizer made from maleic anhydride-PP/rLLDPE in terms of mechanical and thermomechanical properties of the biocomposites. Incorporation of the compatibilizer in the composite improved the interfacial adhesion between the hydrophobic matrix and the hydrophilic agave fiber, which further increased the mechanical properties and heat deflection temperature of the composite. Scanning electron microscopy showed enhanced compatibility and adhesion between the fiber and the matrix by inclusion of 2 wt % compatibilizer. The synthesized compatibilizer-blended composite showed better mechanical properties than the industrial one, which indicates the potential application of this composite (around 62% recycled material) in the manufacture of packaging materials and commodity products.

12.
Epigenetics ; 14(4): 352-364, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30907225

RESUMEN

Extracellular vesicles (EVs) are central to intercellular communication and play an important role in cancer progression and development. Osteosarcoma (OS) is an aggressive bone tumour, characterized by the presence of malignant mesenchymal cells. The specific tumour-driving genetic alterations that are associated with OS development are currently poorly understood. Mesenchymal stem cells (MSCs) of osteogenic lineage have been postulated as likely candidates as the cells of origin for OS, thus indicating that MSCs and OS stroma cells may be related cell types. Therefore, this study set out to examine the EV-mediated intercellular crosstalk of MSCs and OS. MSCs and pre-osteoblasts were treated with OS-EVs at different time points, and the epigenetic signature of OS-EVs was assessed by methylation analysis of LINE-1 (long interspersed element) and tumour suppressor genes. In addition, surface markers and expression of specific genes were also evaluated. Our data indicated that OS-EVs mediated LINE-1 hypomethylation in MSCs, whereas an opposite effect was seen in pre-osteoblasts, indicating that MSCs but not pre-osteoblasts were susceptible to epigenetic transformation. Thus, OS-EVs modulated the fate of MSCs by modulating the epigenetic status, and also influenced the expression of genes related to bone microenvironment remodelling. Overall, this study provided evidence that epigenetic regulation appears to be an early event in the transformation of MSCs during the development of OS. Elucidating the mechanisms of EV-mediated communication may lead to new avenues for therapeutic exploitation.


Asunto(s)
Comunicación Celular , Epigénesis Genética , Vesículas Extracelulares/genética , Células Madre Mesenquimatosas/metabolismo , Osteosarcoma/genética , Tejido Adiposo/citología , Adulto , Línea Celular Tumoral , Células Cultivadas , Metilación de ADN , Vesículas Extracelulares/metabolismo , Femenino , Genes Supresores de Tumor , Humanos , Elementos de Nucleótido Esparcido Largo , Persona de Mediana Edad , Osteoblastos/metabolismo , Osteosarcoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...